Differential Geometry

Homework 7

Mandatory Exercise 1. (10 points)
Let ∇ be an affine connection on M. If $\omega \in \Omega^{1}(M)$ and X a vector field on M, we define the covariant derivative of ω along $X, \nabla_{X} \omega \in \Omega^{1}(M)$, by

$$
\nabla_{X} \omega(Y)=X(\omega(Y))-\omega\left(\nabla_{X} Y\right)
$$

for all vector fields Y.
(a) Show that this formula defines indeed a 1-form.
(b) Show that:
$-\nabla_{f X+g Y} \omega=f \nabla_{X} \omega+g \nabla_{Y} \omega$
$-\nabla_{X}(\omega+\eta)=\nabla_{X} \omega+\nabla_{X} \eta$
$-\nabla_{X}(f \omega)=(X f) \omega+f \nabla_{X} \omega$
for all vector fields $X, Y, f, g \in C^{\infty}(M)$ and $\omega, \eta \in \Omega^{1}(M)$.
(c) Let $x: W \rightarrow \mathbb{R}^{n}$ be local coordinates on an open set $W \subset M$, and take

$$
\omega=\sum_{i=1}^{n} \omega_{i} d x^{i}
$$

Show that

$$
\nabla_{X} \omega=\sum_{i=1}^{n}\left(X \omega_{i}-\sum_{j, k=1}^{n} \Gamma_{i j}^{k} X^{j} \omega_{k}\right) d x^{i}
$$

Mandatory Exercise 2. (10 points)
Let X, X^{\prime}, Y and Y^{\prime} be vector fields on M such that $X=X^{\prime}$ and $Y=Y^{\prime}$ on an open set $W \subset M$. Show that

$$
\nabla_{X} Y=\nabla_{X^{\prime}} Y^{\prime}
$$

Suggested Exercise 1. (0 points)
Recall that while proving the existence of Levi-Civita connection we defined it using the Koszul formula:

$$
2\left\langle\nabla_{X} Y, Z\right\rangle=X(\langle Y, Z\rangle)+Y(\langle X, Z\rangle)-Z(\langle X, Y\rangle)-\langle[X, Z], Y\rangle-\langle[Y, Z], X\rangle+\langle[X, Y], Z\rangle
$$

Show that $\nabla_{X} Y$ defined this way is indeed an affine connection.

Suggested Exercise 2. (0 points)
Prove that the curvature tensor is indeed a tensor.

Suggested Exercise 3. (0 points)
Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇. Show that g is parallel along any curve, i.e. show for an arbitrary vector field X that

$$
\nabla_{X} g=0
$$

Suggested Exercise 4. (0 points)
Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇, and let X be the Killing vector field.
(a) $\left\langle\nabla_{Y} X, Z\right\rangle+\left\langle\nabla_{Z} X, Y\right\rangle=0$ for all vector fields Y, Z.
(b) If $c: I \rightarrow M$ is a geodesic then $\left\langle\dot{c}(t), X_{c(t)}\right\rangle$ is constant.

Suggested Exercise 5. (0 points)
Recall that if M is an oriented differentiable manifold with volume element $\omega \in \Omega^{n}(M)$, the divergence of X is the function $\operatorname{div}(X)$ such that

$$
\mathcal{L}_{X} \omega=\operatorname{div}(X) \omega
$$

Suppose that M carries a Riemannian metric and that ω is a Riemannian volume element. Show that at each point $p \in M$,

$$
\operatorname{div}(X)=\sum_{i=1}^{n}\left\langle\nabla_{Y_{i}} X, Y_{i}\right\rangle
$$

where $\left\{Y_{1}, \ldots, Y_{n}\right\}$ is an orthonormal basis of $T_{p} M$ and ∇ is the Levi-Civita connection.

